1. 다음 중 옳은 것을 모두 고르면? [배점 2, 하중]

① 0 < x < 2 일 때 $\sqrt{x^2} + \sqrt{(x-2)^2} = 2$ 이다.

- ② $(2\sqrt{3} + \sqrt{2})(-\sqrt{2} + \sqrt{3}) = -4 \sqrt{6}$
- $(3) -\frac{1}{2}(2a-6b) = -a-3b$
- $(-2x+y)(2x+y) = -4x^2 + y^2$
- $\Im (a-b)(-a+b) = (a+b)^2$

해설

① 0 < x < 2 일 때, x > 0, x - 2 < 0 이므로

 $\sqrt{x^2} + \sqrt{(x-2)^2} = x + \{-(x-2)\} = 2$

②
$$(2\sqrt{3} + \sqrt{2})(-\sqrt{2} + \sqrt{3})$$

$$=-2\sqrt{6}+6-2+\sqrt{6}$$

$$=4-\sqrt{6}$$

- $(3) -\frac{1}{2}(2a 6b) = -a + 3b$
- (-2x+y)(2x+y) = -(2x-y)(2x+y)
- $=-(4x^2-y^2)=-4x^2+y^2$
- $(3) (a-b)(-a+b) = (a-b) \{-(a-b)\} = -(a-b)$ $b)^{2}$

2. 다음을 바르게 전개한 것은?

[배점 2, 하중]

- ① $(2x-3y)^2 = 4x^2 9y^2$
- $(x 6y)^2 = x^2 12xy + 36y^2$
- (3) $(x-4)(x-6) = x^2 + 10x + 24$
- $(-4x+3)(x+5) = -4x^2 + 23x 15$
- $(\frac{1}{2}x + \frac{1}{3}y)(\frac{1}{2}x \frac{1}{3}y) = \frac{1}{4}x^2 + \frac{1}{9}y^2$

- ① $(2x-3y)^2 = 4x^2 12xy + 9y^2$
- $(3)(x-4)(x-6) = x^2 10x + 24$
- $(4)(-4x+3)(x+5) = -4x^2 17x + 15$
- $(\frac{1}{2}x + \frac{1}{3}y)(\frac{1}{2}x \frac{1}{3}y) = \frac{1}{4}x^2 \frac{1}{0}y^2$
- **3.** (x+A)(x+B) 를 전개하였더니 x^2+Cx+6 이 되었다. 다음 중 C 의 값이 될 수 없는 것은? (단, A, B, C 는 정수) [배점 3, 하상]

 - ① -7 ② -5 ③ -3
- **4** 5

해설

(A+B)x + AB 이므로 C = A+B, AB = 6 1)

AB = 6 이 되는 경우를 구해보면.

(-1,-6)(-2,-3)(-3,-2)(-6,-1)(1,6)(2,3)

(3,2)(6,1)

2) C = A + B 이므로 가능한 C 의 값은 C =±7, ±5 이다.

- **4.** $(x-a)(x-5) = x^2 bx + 15$ 일 때, 상수 a, b 의 곱 *ab* 의 값을 구하여라. [배점 3, 하상]
 - ▶ 답:
 - ▷ 정답: 24

 $\therefore ab = 24$

$$x^{2} - (a+5)x + 5a = x^{2} - bx + 15$$
$$a = 3, b = 8$$

- **5.** $2(x-3)^2 + (x+2)(3x+1) \equiv \text{전개하면}$?
 - ① $x^2 5x + 20$
- ② $5x^2 + 5x + 20$

[배점 3, 하상]

- $3 5x^2 5x 20$
- $4 5x^2 + 5x 20$
- $5x^2 5x + 20$

$$2(x-3)^{2} + (x+2)(3x+1)$$

$$= 2(x^{2} - 6x + 9) + (3x^{2} + x + 6x + 2)$$

$$= 2x^{2} - 12x + 18 + 3x^{2} + 7x + 2$$

$$= 5x^{2} - 5x + 20$$

- **6.** $(x+\frac{1}{3})^2 = x^2 ax + \frac{1}{9}$ 일 때, a 의 값을 구하여라. [배점 3, 하상]

 - ightharpoonup 정답: $a = -\frac{2}{2}$

$$(x+\frac{1}{3})^2 = x^2 + \frac{2}{3}x + \frac{1}{9}$$

따라서 $a = -\frac{2}{3}$

- **7.** $(-x+y)^2$ 의 전개식의 결과와 같은 것은? [배점 3, 하상]

 - ① $(x+y)^2$ ② $(x-y)^2$
 - $(3) -(x-y)^2$ $(4) -(y-x)^2$
 - \bigcirc $-(-x-y)^2$

$$(-x+y)^2 = x^2 - 2xy + y^2$$
$$(x-y)^2 = x^2 - 2xy + y^2$$

- 8. (x+3)(x+A) 를 전개하여 간단히 한 식에서 x 의 계수가 1 일 때, 상수항은? [배점 3, 하상]

 - $\bigcirc -6$ $\bigcirc -3$ $\bigcirc -2$ $\bigcirc 4$ $\bigcirc -1$ $\bigcirc 0$

$$(x+3)(x+A) = x^2 + (3+A)x + 3A$$
에서 x 의 계수: $3+A=1$ \therefore $A=-2$ 상수항: $3A=3\times(-2)=-6$

9. (x+a)(2x-3) 에서 x 의 계수가 3 일 때, (x+a+a) $5)(ax-2) = x^2 + x +$ 이다. 다음 안에 알맞은 것을 써넣어라.

[배점 3, 하상]

▶ 답:

> **정답**: -16

$$(x+a)(2x-3) = 2x^2 - 3x + 2ax - 3a$$

$$\Rightarrow -3 + 2a = 3, a = 3$$

$$(x+3+5)(3x-2) = (x+8)(3x-2)$$

$$= 3x^2 + 22x - 16$$

10. 다음 중 전개식이 옳지 않은 것은? [배점 3, 중하]

①
$$(3a-4)(a-2) = 3a^2 - 10a + 8$$

②
$$(a+1)(a+3) = a^2 + 4a + 3$$

$$(-a+b)(-a-b) = a^2 - b^2$$

$$(3a-1)^2 = 9a^2 - 6a + 1$$

- **11.** $(2x-a)^2 = 4x^2 + 12x + b$ 일 때, a+b 의 값을 구하 면?(단, *a*, *b* 는 상수) [배점 3, 중하]
 - ① -12
- $\bigcirc -6$

- ④ 12
- ⑤ 18

$$(2x-a)^2 = 4x^2 - 4ax + a^2$$

-4a = 12 에서 $a = -3$, $b = a^2 = 9$
따라서, $a + b = -3 + 9 = 6$

- **12.** 세 모서리의 길이가 각각 x+1, 2x+1, 2x-1 인 직 육면체의 겉넓이를 나타낸 식은? [배점 3, 중하]
 - ① $16x^2 + 8x 2$ ② $16x^2 + 8x + 2$
 - $3 16x^2 12x + 4$
- $4 16x^2 + 12x 4$
- $\bigcirc 16x^2 8x + 8$

$$2 \times \{(x+1)(2x+1) + (2x+1)(2x-1) + (2x-1)(x+1)\} = 2 \times (8x^2 + 4x - 1) = 16x^2 + 8x - 2$$

13. (3x+4)(x-3)-4(5x+1)(2x-1) 을 전개하여 간단히 하였을 때, 일차항의 계수를 구하여라.

[배점 3, 중하]

▶ 답:

▷ 정답: 7

해설

(준식)= $3x^2-9x+4x-12-4(10x^2-5x+2x-1)$ $=3x^2-5x-12-40x^2+12x+4=-37x^2+7x-8$ 따라서 일차항의 계수는 7

14. (x+y-2)(x+y+2) 의 전개식에서 xy 의 계수를 A, 상수항을 B 라 할 때,A + B 의 값은?

[배점 3, 중하]

- $\bigcirc -2 \quad \bigcirc -1 \quad \bigcirc 0 \quad \bigcirc 4 \quad 1 \quad \bigcirc 2$

해설

(x+y-2)(x+y+2) 의 식에서 xy 의 항: xy+xy=2xy, 상수항은 -4

$$∴ A = 2, B = -4$$
 이고 $A + B = -2$

t = x + y 라고 놓으면,

 $(x+y-2)(x+y+2) = (t-2)(t+2) = t^2 - 4$ $=(x+y)^2-4=x^2+2xy+y^2-4$ xy 의 계수 A=2, 상수항 B=-4

$$A + B = 2 - 4 = -2$$

15. a > 0, b > 0 일 때, $(a + 2)(b + 1) = ab + \Box + 2$ 임을 알 수 있다. 이 때, 빈칸에 알맞은 식은?

[배점 3, 중하]

- ① 2a + b
- (2) a + 2b
- 3 a+b

- (4) 2b
- \bigcirc 2a

$$(a+2)(b+1) = ab + a + 2b + 2$$

16. (4x+9)(x-2) 를 전개하면 $4x^2-(2a-5)x+3b$ 이다. 이 때, 상수 a,b 의 곱 ab 의 값을 구하여라.

[배점 3, 중하]

- 답:
- ightharpoonup 정답: ab = -12

$$4x^2 + x - 18 = 4x^2 - (2a - 5)x + 3b$$

$$1) -2a + 5 = 1$$
에서 $a = 2$

2)
$$3b = -18$$
에서 $b = -6$

$$\therefore ab = -12$$

17. (3x + 4)(2x - 1) 의 전개식에서 x^2 의 계수와 x 의 계수의 합을 구하여라. [배점 3, 중하]

답:

➢ 정답: 11

 $(3x+4)(2x-1) = 6x^2 - 3x + 8x - 4 = 6x^2 + 5x - 4$ 에서 x^2 의 계수= 6 , x 의 계수= 8-3=5

 $\therefore 6+5=11$

18. 찬우는 (x + 3)(x - 4) 를 전개하는데 -4 를 A 로 잘못 보아서 $x^2 + 7x - B$ 로 전개하였고, 성철이는 (2x+1)(x-3) 을 전개하는데 x 의 계수 2를 C 로 잘못 보아서 $Cx^2 + 7x - 3$ 으로 전개하였다. 이 때, 상수 *A*, *B*, *C* 의 합을 구하여라. [배점 4, 중중]

▶ 답:

▷ 정답: -10

- 1) $(x+3)(x+A) = x^2 + (3+A)x + 3A = x^2 +$ 7x - B
- 3 + A = 7, A = 4 3A = -B, B = -12
- 2) $(Cx + 1)(x 3) = Cx^2 + (1 3C)x 3 =$ $cx^2 + 7x - 3$
- 1 3C = 7, C = -2
- $\therefore A + B + C = 4 12 2 = -10$
- **19.** $(x^2 2x + 1)^2$ 을 전개하였을 때, x^2 의 계수는? [배점 4, 중중]
 - $\bigcirc 1 -3 \qquad \bigcirc 2 -2 \qquad \bigcirc 3 \ 4 \qquad \bigcirc 4 \ 5$

 $(x^2-2x+1)(x^2-2x+1)$ 의 식에서 $x^2 \ \overline{\Diamond}^1 : x^2 - 2x \times (-2x) + x^2 = 2x^2 + 4x^2 = 6x^2$ ∴ x² 의 계수는 6

 $(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca = 0$ 용 하면, $(x^2-2x+1)^2 = x^4+4x^2+1-4x^3-4x+2x^2$ $=x^4-4x^3+6x^2-4x+1$ ∴ x² 의 계수는 6

- **20.** $(3a 2b + 4)^2$ 을 전개했을 때, ab 의 계수를 P, a 의 계수를 Q 라고 하면 P+Q 의 값은?
 - [배점 4, 중중]

- \bigcirc -36
- ② 6
- 3 -3

- **4** 0

해설

(3a-2b+4)(3a-2b+4)의 식에서

$$ab$$
 항: $-6ab - 6ab = -12ab$ 의 계수 $P = -12$,

a 항: 12a + 12a = 24a a의 계수 Q = 24

P + Q = -12 + 24 = 12

21. $(4x^2 - 3x + 2)(3x^3 + 5x^2 + 7)$ 을 전개하였을 때, 상 수항을 포함한 모든 항의 계수들의 합을 구하여라.

[배점 4, 중중]

- ▶ 답:
- ➢ 정답: 45

해설

- (준식)= $12x^5 + 11x^4 9x^3 + 38x^2 21x + 14$ 따라서, 모든 항의 계수들의 합은
- 12 + 11 + (-9) + 38 + (-21) + 14 = 45

해설

- $(4x^2 3x + 2)(3x^3 + 5x^2 + 7)$
- $=Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F$
- 양변에 x=1을 대입하면,
- A+B+C+D+E+F = (4-3+2)(3+5+7)

 $= 3 \times 15 = 45$

- **22.** xy = x + y 일 때, (x 1)(y 1) 의 값을 구하여라. [배점 4, 중중]
 - ▶ 답:
 - ▷ 정답: 1
 - 해설

$$(x-1)(y-1)$$

= $xy - x - y + 1$
= $(x + y) - x - y + 1 = 1$

- **23.** $a^2=10,\ b^2=8$ 일 때, $(\frac{1}{3}a+\frac{3}{4}b)(\frac{1}{3}a-\frac{3}{4}b)$ 의 값을 구여라?
 - ▶ 답:
 - ightharpoonup 정답: $-\frac{61}{18}$
 - 해설

$$\frac{1}{9}a^2 - \frac{9}{16}b^2 = \frac{10}{9} - 9 \times \frac{8}{16} = \frac{10}{9} - \frac{9}{2} = -\frac{61}{18}$$

- ${f 24.} \ (2-1)(2+1)(2^2+1)(2^4+1)$ 을 간단히 하면? [배점 $4, \ \ \,$ 중중]
 - ① 63
- ⁽²⁾ 65
- ③ 127

- ④ 129
- **3**255
- 해설

$$(2^2-1)(2^2+1)(2^4+1) = (2^4-1)(2^4+1) = 2^8-1$$

= 256 - 1 = 255

- **25.** $a^2=18,\ b^2=16$ 일 때, $\left(\frac{1}{3}a+\frac{3}{4}b\right)\left(\frac{1}{3}a-\frac{3}{4}b\right)$ 의 값을 구하여라. [배점 4, 중중]
 - ▶ 답:
 - ▷ 정답: -7

해설

$$\begin{split} (\vec{\Xi}^{\lambda}) &= \left(\frac{1}{3}a\right)^2 - \left(\frac{3}{4}b\right)^2 \\ &= \frac{1}{9}a^2 - \frac{9}{16}b^2 \\ &= \frac{1}{9} \times 18 - \frac{9}{16} \times 16 \\ &= 2 - 9 = -7 \end{split}$$

- **26.** 학성이는 (x+2)(x-5) 를 전개하는데 -5 를 A 로 잘못보아 x^2+7x+B 로 전개하였다. 또, (2x-1)(x+3)을 전개하는데 x의 계수 2를 잘못보아서 Cx^2-7x-3 으로 전개하였다. 이 때, A+B+C의 값을 구하시오. [배점 5, 중상]
 - ▶ 답:
 - ightharpoonup 정답: A + B + C = 13

해설

$$(x+2)(x+A) = x^2 + 7x + B$$
이므로 $A+2=7, 2A=B$ $\therefore A=5, B=10$ x 의 계수를 잘못 보았기 때문에 그 수를 D 라하면 $(Dx-1)(x+3) = Cx^2 - 7x - 3$ 이므로 $D=-2, C=-2$ $\therefore A+B+C=13$

- **27.** (x 2y + 3)(3x + y 4) 를 전개하였을 때, xy 의계수를 a, 상수항을 b 라 할 때, |-a + b| |b 2a|의 값을 구하여라. [배점 5, 중상]
 - ▶ 답:
 - ▷ 정답: 5
 - 해설

$$(x - 2y + 3)(3x + y - 4) = 3x^2 - 2y^2 - 5xy +$$

$$9x - 2y - 12$$
에서

$$xy$$
 의 계수: $a=-5$

상수항:
$$b = -12$$

$$| \cdot \cdot | -a + b | - |b - 2a| = 7 - 2 = 5$$

- **28.** $\left(x \frac{1}{2}\right)\left(x + \frac{1}{2}\right)\left(x^2 + \frac{1}{4}\right)\left(x^4 + \frac{1}{16}\right)$ = $x^a + b$ 에서 두 상수 a, b 의 곱 ab 의 값을 구하여라. [배점 5, 중상]
 - ▶ 답:
 - ightharpoonup 정답: $-\frac{1}{32}$
 - _ 해석

$$x^8 - \frac{1}{16}^2$$
 이므로 $a = 8, b = -\frac{1}{256}$
 $\therefore ab = 8 \times -\frac{1}{256} = -\frac{1}{32}$

- **29.** $(2+1)(2^2+1)(2^4+1)(2^8+1) = 2^{16} + □$ 에서 빈칸에 알맞은 값을 구하여라. [배점 5, 중상]
 - ▶ 답:
 - ▷ 정답: -1

해설

좌변에 (2-1)을 곱한다.

$$2 - 1 = 1$$
 이므로 우변의 값은 변하지 않는다.

$$(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)$$

$$= (2^2 - 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)$$

$$=(2^4-1)(2^4+1)(2^8+1)$$

$$=(2^8-1)(2^8+1)$$

$$=2^{16}-1$$

$$\therefore \square = -1$$

- **30.** $(x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)=x^a+b$ 일 때, 상수 a, b 에 대하여 a-b 의 값을 구하여라.
 - [배점 5, 중상]

- ▶ 답:
- ightharpoonup 정답: -b + a = 17

해석

$$(x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)$$

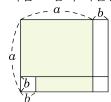
$$= (x^2-1)(x^2+1)(x^4+1)(x^8+1)$$

$$= (x^4-1)(x^4+1)(x^8+1)$$

$$= (x^8-1)(x^8+1)$$

$$x^{16}-1$$
이므로
$$a=16,b=-1: a-b=17$$

31. x+y 의 역수가 x-y 일 때, x^2-y^2 의 값을 구하여라. [배점 5, 중상]



▷ 정답: 1

$$(x+y)(x-y) = 1$$
 이므로 $x^2 - y^2 = 1$

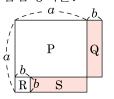
32. 다음 그림의 색칠한 부분의 넓이를 나타낸 식은?

[배점 5, 중상]

①
$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(3)(a+b)(a-b) = a^2 - b^2$$


$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

$$(3) (ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

해설

색칠한 부분의 넓이는 a^2-b^2

33. 다음 그림에서 Q = S 임을 이용하여 만들어 낼 수있는 곱셈 공식은?

[배점 5, 중상]

①
$$(a+b)^2 = a^2 + 2ab + b^2$$

②
$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

$$(4)$$
 $(x+a)(x+b) = x^2 + (a+b)x + ab$

⑤
$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$

해설

1)
$$P + Q = (a + b)(a - b)$$

2)
$$P + S = a^2 - R = a^2 - b^2$$

 $P + Q = P + S$ 이므로

$$\therefore (a+b)(a-b) = a^2 - b^2$$

- **34.** $\left(2x^2+3x+4+\frac{5}{x}\right)^2$ 의 전개식에서 상수항을 a , x 항의 계수를 b 라고 할 때, a-b 의 값을 구하여라. [배점 5, 상하]
 - ▶ 답:
 - ▷ 정답: 2
- ${f 35.} \, \left(2-\sqrt{3}
 ight)^{99} \left(2+\sqrt{3}
 ight)^{99}$ 을 계산하여라. [배점 $5,\,\,\,$ 상하]
 - ▶ 답:
 - ▷ 정답: 1
 - 해설 $(준식) = \{(2 \sqrt{3})(2 + \sqrt{3})\}^{99}$ $= \{2^2 (\sqrt{3})^2\}^{99} = 1^{99}$ = 1