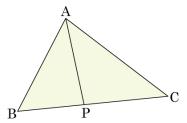
확인학습23

1. 다음 그림의 $\triangle ABC$ 에서 \overline{BP} : $\overline{PC}=3:4$ 이고, $\triangle ABC$ 의 넓이가 $49\,\mathrm{cm}^2$ 일 때, $\triangle APC$ 의 넓이는?



[배점 2, 하중]

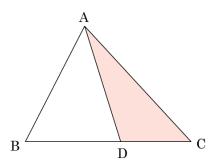
- $21 \, \mathrm{cm}^2$
- $328 \,\mathrm{cm}^2$

- $40 \ 30 \ cm^2$
- $342 \, \text{cm}^2$

해설

 \triangle ABP와 \triangle APC의 높이는 같으므로 \triangle APC = $49(\,\mathrm{cm}^2) imes \frac{4}{7} = 28(\,\mathrm{cm}^2)$

다음 △ABC 의 넓이는 30 cm² 이다. BD 의 길이가 DC 의 길이보다 2 배 길다고 할 때, △ADC 의 넓이를 구하여라.



[배점 2, 하중]

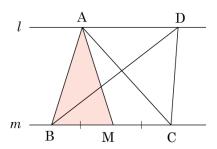
▶ 답:

▷ 정답: 10 cm²

해설

 $\overline{\mathrm{DC}}$ 의 길이는 $\overline{\mathrm{BD}}$ 의 길이의 $\frac{1}{2}$ 이므로 $\overline{\mathrm{BC}}$ 의 길이의 $\frac{1}{3}$ 이 된다. 그러므로 넓이도 삼각형 ABC 의 넓이의 $\frac{1}{3}$ 이 된다. 따라서 $\triangle\mathrm{ADC}$ 의 넓이는 $10\,\mathrm{cm}^2$ 이다.

3. 다음 그림과 같이 평행한 두 직선 l, m 이 있다. $\Delta DBC = 20~\rm{cm}^2~\rm{ol} \, a, \ ABM~\rm{ol} \, a = 20~\rm{cm}^2 \, a = 20~\rm{$



[배점 2, 하중]

▶ 답:

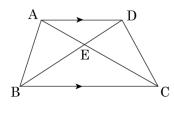
➢ 정답: 10 cm²

해설

 $\triangle ABM$ 의 밑변의 길이는 $\triangle DBC$ 의 밑변의 길이 의 $\frac{1}{2}$ 이므로 넓이도 $\frac{1}{2}$ 이다.

 $\therefore \triangle ABM = 10 \text{ (cm}^2)$

4. 다음 그림의 사각형 ABCD 에서 AD // BC 이고, △ABC 의 넓이가 20 cm² 일 때, △DBC 의 넓이를 구하여라.



[배점 2, 하중]

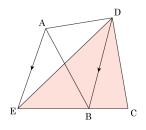
▶ 답:

ightharpoonup 정답: $20\,\mathrm{cm}^2$

해설

밑변이 동일하고 밑변과 평행한 직선까지의 거리가 같으므로 $\triangle ABC$ 의 넓이와 $\triangle DBC$ 의 넓이는 동일하므로 $20\,\mathrm{cm}^2$ 이다.

5. 다음 그림에서 AE // DB 이고, □ABCD = 12 cm² 일 때, △DEC 의 넓이를 구하여라.



[배점 3, 하상]

▶ 답:

> 정답: 12 cm²

해설

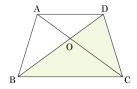
 $\triangle DEC = \triangle DEB + \triangle DBC$

 $= \triangle ABD + \triangle DBC$

 $= \Box ABCD$

 $\therefore \triangle DEC = 12 (cm^2)$

6. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\triangle ABO = 20 \text{cm}^2$, $2\overline{DO} = \overline{BO}$ 일 때, $\triangle DBC$ 의 넓이 는?



[배점 3, 하상]

- \bigcirc 40cm²
- $2 50 \text{cm}^2$
- 360cm^2

- $40 \text{ } 70 \text{ cm}^2$
- \odot 80cm^2

해설

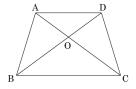
 $\triangle AOB = \triangle COD = 20cm^2$

또, $2\overline{DO} = \overline{BO}$ 이므로

 $\therefore \triangle BOC = 40cm^2$

따라서 $\triangle DBC = \triangle COD + \triangle BOC = 20 + 40 = 60(cm^2)$

7. 다음 그림의 □ABCD 는 AD//BC 인 사다리꼴이다. 두 대각선의 교점을 O 라 할 때, △ABC = 50cm², △DOC = 15cm² 이다. 이 때, △OBC 의 넓이는?



[배점 3, 하상]

- \bigcirc 25cm²
- 235cm^2
- 345cm^2

- $4 55 \text{cm}^2$
- $\odot~65\mathrm{cm}^2$

해설

 $\triangle ABC = \triangle DBC$ 이므로 $\triangle ABO = \triangle DOC$

 $\triangle OBC = 50 - 15 = 35(cm^2)$

8. 다음 그림의 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, \overline{DP} : $\overline{PE} = 3:1$ 이다. 평행사변형의 넓이는 48cm²일 때, △DPQ의 넓이는?

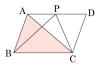
[배점 3, 하상]

 \bigcirc 4cm²

- $4 \frac{11}{2} \text{cm}^2$
- \bigcirc 6cm²

 $\triangle BDE = \frac{1}{2}\triangle ABD = \frac{1}{2} \times \frac{1}{2}\square ABCD = 12(cm^{2})$ $\triangle DBP : \triangle EBP = 3 : 1 \circ] 므로$ $\triangle DBP = \frac{3}{4}\triangle BDE = \frac{3}{4} \times 12 = 9(cm^{2})$ $\triangle BPQ : \triangle DPQ = 1 : 1$ $\triangle DPQ = \frac{1}{2}\triangle DBP = \frac{1}{2} \times 9 = \frac{9}{2}(cm^{2})$

다음 그림과 같이 □ABCD가 평행사변형이고 $\triangle PBC = 14cm^2$ 일 때, 색칠한 부분의 넓이를 구하 여라. (단, 단위는 생략한다.)



[배점 3, 하상]

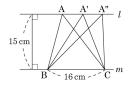
답:

▷ 정답: 14

 \triangle PBC와 \triangle ABC는 밑변의 길이 \overline{BC} 와 높이가 같

 $\triangle ABC = \triangle PBC = 14(cm^2)$ 이다.

10. 다음 그림에서 l // m 이다. l과 m 사이의 거리는 15cm, $\overline{BC} = 16 \text{cm}$ 일 때, $\triangle ABC$, $\triangle A'BC$, $\triangle A''BC$ 의 넓이 의 비는?



[배점 3, 하상]

- 1:1:1
- ② 1:2:1
 - ③ 1:2:3

- 4 2:1:2
- ⑤ 2:3:1

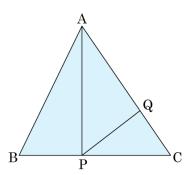
세 변의 삼각형의 밑변의 길이가 같으므로

 $\triangle ABC = \triangle A'BC = \triangle A''BC = \frac{1}{2} \times 16 \times 15$

 $= 120 (cm^2)$

 $\therefore \triangle ABC : \triangle A'BC : \triangle A''BC = 1:1:1$

 ${f 11.}$ 다음 그림에서 $\overline{BP}:\overline{PC}=2:3$, $\overline{CQ}:\overline{QA}=1:2$ 이다. $\triangle ABC = 20 \text{ cm}^2$ 일 때, $\triangle APQ$ 의 넓이를 구하 여라.



[배점 3, 중하]

답:

▷ 정답: 8 cm²

 \triangle ABP와 \triangle APC의 높이는 같으므로

$$\triangle ABP = 20 \times \frac{2}{\pi} = 8(\text{ cm}^2)$$

$$\triangle ABP = 20 \times \frac{2}{5} = 8(\text{ cm}^2)$$

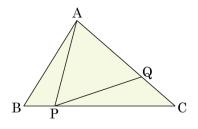
$$\triangle APC = 20 \times \frac{3}{5} = 12(\text{ cm}^2)$$

 \triangle PCQ와 \triangle APQ의 높이는 같다.

$$\triangle PCQ = 12 \times \frac{1}{3} = 4(\text{cm}^2)$$

 $\triangle PCQ = 12 \times \frac{1}{3} = 4(\text{ cm}^2)$ $\triangle APQ = 12 \times \frac{2}{3} = 8(\text{ cm}^2)$

12. 다음 그림에서 $\overline{BP}:\overline{CP}=\overline{CQ}:\overline{AQ}=1:3$ 이다. $\triangle APQ = 24 \, \mathrm{cm}^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.



[배점 3, 중하]

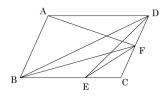
ightharpoonup 정답: $\frac{128}{3} \, \mathrm{cm}^2$

$$\triangle APC = 24 \times \frac{4}{3} = 32 (\text{ cm}^2)$$

$$\triangle APC = 24 \times \frac{4}{3} = 32 \text{ cm}^2$$

 $\therefore \triangle ABC = 32 \times \frac{4}{3} = \frac{128}{3} \text{ cm}^2$

13. 다음 그림은 평행사변형 ABCD 이다. 다음 보기 중 넓이가 가장 넓은 것을 골라라.



보기

 \bigcirc $\triangle ADF$

© △ABD

 \bigcirc \triangle BDF

△BFC

 $\ \ \ \triangle ABF$

[배점 3, 중하]

▶ 답:

▶ 답:

▷ 정답: 心

▷ 정답: ⑪

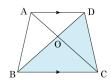
해설

밑변이 공통이면 높이가 높은 것이 넓이가 넓다. 평행사변형의 평행한 직선 $\overline{AB},\ \overline{DC}$ 에서 모두 밑 변을 가지고 있으므로

밑변이 가장 긴 것을 찾고 그중 높이가 높은 것을 찾는다.

따라서 △ABD가 가장 넓은 삼각형이다.

14. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{AO}:\overline{CO}=2:3$ 이다. $\triangle ABD$ 가 $30 cm^2$ 일 때, $\triangle DBC$ 의 넓이를 구하여라.



[배점 3, 중하]

▶ 답:

> 정답: 45 cm²

해설

$$\triangle ABD = \triangle ACD = 30cm^2$$
, $\triangle AOD : \triangle DOC =$

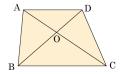
$$2:3$$
, $\triangle DOC = 18cm^2$

$$\triangle \mathrm{DOC} = \triangle \mathrm{AOB} = 18 \mathrm{cm}^2$$
 , 2 : 3 = $18 \mathrm{cm}^2$:

$$\triangle OBC$$
, $\triangle OBC = 27cm^2$

$$\therefore$$
 $\triangle DBC = \triangle DOC + \triangle OBC = 18 + 27 = 45(cm2)$

15. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{OA}:\overline{OC}=2:3$ 이다. $\triangle AOD=10 cm^2$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



[배점 3, 중하]

해설

 \triangle AOD , \triangle DOC 는 높이가 같다. 2:3=10cm² :

 $\triangle DOC$, $\triangle DOC = 15cm^2$

 \triangle ABD = \triangle ACD 이므로 \triangle ABO = \triangle DOC = 15cm²

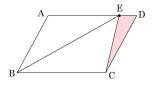
 \triangle ABO , \triangle BCO 는 높이가 같다. 2:3=15cm $^2:$

 $\triangle OBC$, $\triangle OBC = \frac{45}{2} cm^2$

 $\Box ABCD = \triangle AOD + \triangle DOC + \triangle OBC +$

 $\triangle ABO = 10 + 15 + 15 + \frac{45}{2} = \frac{125}{2} (cm^2)$

16. 다음 그림과 같이 넓이가 100cm^2 인 평행사변형 ABCD 에서 $\overline{\text{AD}}$ 위의 점 E 에 대하여 $\overline{\text{AE}}$: $\overline{\text{DE}} = 4:1$ 일 때 $\triangle \text{ECD}$ 의 넓이를 구하여라.



[배점 3, 중하]

▶ 답:

▷ 정답: 10 cm²

해설

 \triangle ABE , \triangle ECD , \triangle EBC 의 높이는 모두 같다.

 $\overline{AE} + \overline{ED} = \overline{BC}$ 이므로, $\triangle ABE + \triangle ECD =$

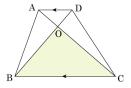
 \triangle EBC 이다.

따라서 $\triangle ABE + \triangle ECD = 50 cm^2$ 이다.

 $\triangle ECD: \triangle ABE = 1: 4 = 10cm^2: 40cm^2$

 $\therefore \triangle ECD = 10cm^2$

17. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{AO}:\overline{CO}=1:3$ 이고 $\triangle AOB=6cm^2$ 일 때, $\triangle OBC$ 의 넓이를 구하여라.



[배점 3, 중하]

▶ 답:

> 정답: 18 cm²

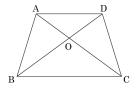
해설

 \triangle ABO , \triangle OBC 는 높이가 같고 밑변이 다르다.

 $\triangle ABO : \triangle OBC = 1 : 3 = 6cm^2 : \triangle OBC$

 $\triangle OBC = 18cm^2$

18. 다음 그림과 같이 AD//BC 인 사다리꼴 ABCD 에서 OA: OC = 1:2 이다. △AOD = 48cm² 일 때, □ABCD 의 넓이는?



[배점 4, 중중]

- 132cm^2
- 2480cm^2
- 3562cm^2

- 400cm^2
- \bigcirc 642cm²

해설

 $\triangle AOD : \triangle COD = 1 : 2$ 이므로

 $48 : \triangle COD = 1 : 2 \therefore \triangle COD = 96cm$

이때 $\triangle ABD = \triangle ACD$ 이므로

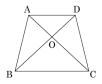
 $\triangle ABO = \triangle COD = 96cm$

또, $\triangle ABO : \triangle COB = 1 : 2$ 이므로

 $96:\triangle COB = 1:2$ $\therefore \triangle COB = 192cm$

 $\therefore \Box ABCD = 48 + 96 + 96 + 192 = 432 (\text{ cm}^2)$

19. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\overline{OD}:\overline{OB}=2:3$ 이다. $\triangle OCB$ 의 넓이가 18 일 때, $\Box ABCD$ 의 넓이를 구하여라.



[배점 4, 중중]

▶ 답:

➢ 정답 : 48

해설

 $\triangle COD : \triangle BOC = 2 : 3$ 이므로

 $\triangle COD : 18 = 2 : 3$ $\therefore \triangle COD = 12$

이때 $\triangle ABD = \triangle ACD$ 이므로

 $\triangle OBA = \triangle COD = 12$

또, $\triangle AOD : \triangle AOB = 2 : 3 이므로$

 $\triangle AOD : 12 = 2 : 3$ $\therefore \triangle AOD = 6$

 $\therefore \Box ABCD = 6 + 12 + 12 + 18 = 48$

20. 다음 그림의 평행사변형 ABCD에서 점 E는 변 AB의 중점이고, \overline{DP} : $\overline{PE} = 2:1$ 이다. 평행사변형 ABCD 의 넓이가 600일 때, $\triangle \mathrm{DPQ}$ 의 넓이를 구하여라.

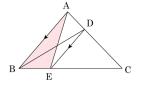
[배점 4, 중중]

▶ 답:

➢ 정답: 50

 $\triangle BDE = \frac{1}{2}\triangle ABD = \frac{1}{2} \times \frac{1}{2}\Box ABCD = 150$ $\triangle DBP : \triangle EBP = 2 : 1 \circ | \Box \Box \Box$ $\triangle DBP = \frac{2}{3}\triangle BDE = \frac{2}{3} \times 150 = 100$ $\triangle BPQ : \triangle DPQ = 1 : 1$ $\therefore \triangle DPQ = \frac{1}{2}\triangle DBP = \frac{1}{2} \times 100 = 50$

21. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB} // \overline{DE}$ 이고, $\triangle ABC = 30$, $\triangle DBC = 24$ 일 때, $\triangle ABE$ 의 넓이를 구하여라.



[배점 4, 중중]

답:

▷ 정답: 6

 $\overline{\mathrm{AB}} \, / \, \overline{\mathrm{DE}}$ 이므로 밑변과 높이가 같아

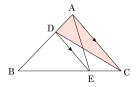
 $\triangle DBE = \triangle AED$ 이다.

 $\triangle AEC = \triangle DEC + \triangle AED = \triangle DEC + \triangle DBE$

 $= \triangle DBC = 24$

 $\therefore \triangle ABE = \triangle ABC - \triangle AEC = 30 - 24 = 6$

22. 다음 그림과 같은 \triangle ABC에서 \overline{AC} $/\!\!/\,\overline{DE}$ 이고, \triangle ABC = 40cm^2 , \triangle ABE = 25cm^2 이다. \triangle ADC의 넓이가 $x\text{cm}^2$ 일 때, x의 값을 구하여라.



[배점 4, 중중]

▶ 답:

➢ 정답: 15

해설

 $\overline{\mathrm{AC}} \, / / \, \overline{\mathrm{DE}}$ 이므로 밑변과 높이가 같아

 $\triangle ADE = \triangle DEC$ 이다.

 $\triangle DBC = \triangle DBE + \triangle DEC = \triangle DBE + \triangle ADE =$

 $\triangle ABE = 25(cm^2)$

 $\therefore \triangle ADC = \triangle ABC - \triangle DBC = 40 - 25 =$

 $15(\mathrm{cm}^2)$

 $\therefore x = 15$

23. 다음 그림과 같이 AC // DE 이고 △ABC = 25, △ACE = 10일 때, □ABCD의 넓이를 구하여라.

[배점 4, 중중]

▶ 답:

▷ 정답: 35

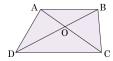
해설

 \overline{AC} $/\!/ \overline{DE}$ 이므로 $\triangle ACD$ 와 $\triangle ACE$ 는 밑변 \overline{AC} 가 같고 높이가 같으므로 넓이가 같다.

 $\Box ABCD = \triangle ABC + \triangle ACD = \triangle ABC + \triangle ACE$

 $\therefore \Box ABCD = 25 + 10 = 35$

24. 다음 그림에서 사다리꼴 ABCD 는 $\overline{AB}//\overline{CO}$, \overline{AO} : $\overline{\mathrm{CD}}=1:2$ 이고 사다리꼴 ABCD 의 넓이가 $27\mathrm{cm}^2$ 일 때, △AOB 의 넓이는?



[배점 5, 중상]

- $3 cm^2$
- \bigcirc 4cm²
- 3 5cm^2

- \bigcirc 6cm²
- \odot 7cm²

 $\Box ABCD = \triangle AOB + \triangle BOC + \triangle OCD + \triangle ADO$ 이다.

$$\triangle {\rm AOB} = a$$
 , $1:2=a:\triangle {\rm BOC}$, $\triangle {\rm BOC} = 2a$

$$\triangle BOC = \triangle AOD = 2a$$
, $1:2 = 2a:\triangle COD$,

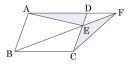
 $\triangle COD = 4a$

$$\Box ABCD = a + 2a + 2a + 4a = 9a = 27cm^2$$
,

 $a = 3 \text{cm}^2$

 $\therefore \triangle AOB = a = 3cm^2$

 ${f 25}$. 다음 그림과 같은 평행사변형 ${f ABCD}$ 에서 ${f DE}$: ${f EC}$ = 1 : 2일 때, △ADE+△FEC의 값은 평행사변형 ABCD 의 넓이의 몇 배인가?



[배점 5, 중상]

- ① $\frac{1}{2}$ 바 ② $\frac{1}{3}$ 바 ④ $\frac{1}{7}$ 바 ⑤ $\frac{1}{10}$ 바

 \triangle ADE와 \triangle BCE는 높이는 같고 밑변이 1:2이

므로
$$\triangle ADE : \triangle BCE = 1 : 2$$

$$\triangle ADE = \triangle ACD \times \frac{1}{1+2} = \frac{1}{2} \Box ABCD \times \frac{1}{3} =$$

$$\frac{1}{6}\Box ABCD$$

$$\triangle BCE = 2\triangle ADE = \frac{1}{3}\Box ABCD$$

$$\overline{AF} // \overline{BC}$$
이므로 $\triangle FBC = \triangle DBC = \frac{1}{2} \square ABCD$

$$\triangle FEC = \triangle FBC - \triangle BCE = \left(\frac{1}{2} - \frac{1}{3}\right) \times$$

$\square ABCD$

$$=\frac{1}{6}\Box ABCD$$

$$\therefore \triangle ADE + \triangle FEC = \frac{1}{3} \Box ABCD$$