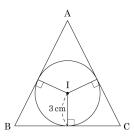
확인학습문제

1. 다음 그림에서 반지름의 길이가 3 cm 인 원 I 는 △ABC 의 내접원이다. △ABC 의 넓이가 20cm^2 일 때, △ABC 의 세 변의 길이의 합을 구하여라.



[배점 2, 하중]

▶ 답:

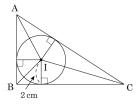
 \triangleright 정답: $\frac{40}{3}$ cm

해설

 \triangle ABI, \triangle BCI, \triangle ICA 의 높이는 내접원의 반지름 의 길이와 같으므로, 삼각형의 넓이는 $\frac{1}{2}\times(\overline{AB}+\overline{BC}+\overline{CA})\times 3=20$

 $\therefore \overline{AB} + \overline{BC} + \overline{CA} = \frac{40}{3} cm$

다음 그림에서 점 I 는 △ABC 의 내심이고, 내접원의 반지름의 길이는 2cm 이다. △ABC 의 넓이가 24cm² 일 때, △ABC 의 세변의 길이의 합을 구하여라.



[배점 2, 하중]

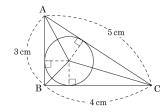
▶ 답:

▷ 정답: 24 cm

해설

 $\triangle ABI$, $\triangle BCI$, $\triangle ICA$ 의 높이는 같으므로, 삼각형의 넓이는 $\frac{1}{2} \times (\overline{AB} + \overline{BC} + \overline{CA}) \times 2 = 24$ $\therefore \ \overline{AB} + \overline{BC} + \overline{CA} = 24 \mathrm{cm}$

3. 다음 그림과 같은 △ABC 의 넓이가 36cm² 일 때, 내 접원의 반지름은?



[배점 2, 하중]

- ① 3cm
- \bigcirc 4cm
- ③ 5cm

(4)6cm

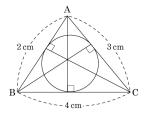
⑤ 7cm

해설

내접원의 중심을 점 I라고 하면, \triangle ABI, \triangle IBC, \triangle ICA 의 높이는 내접원의 반지름이다. 내접원의 반지름을 x 라 하면 $\frac{1}{2}(3+4+5)x=36\mathrm{cm}^2$

$$\therefore x = 6 \text{cm}$$

4. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $12cm^2$ 일 때, 내 접원의 반지름의 길이를 구하여라.



[배점 2, 하중]

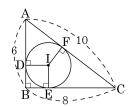
▶ 답:

ightharpoonup 정답: $\frac{8}{3}$ cm

해설

내접원의 중심을 I라고 하면, \triangle ABI, \triangle IBC, \triangle ICA 의 높이는 내접원의 반지름과 같다. 내접원 의 반지름을 x 라 하면 $\frac{1}{2}(2+4+3)x=12\mathrm{cm}^2$ $\therefore x=\frac{8}{3}\mathrm{cm}$

5. 다음 그림에서 원 I 는 직각삼각형 ABC 의 내접원이 고, 점 D, E, F 는 각각 접점이다. 이 때, 내접원 I 의 반지름의 길이는? (단, $\overline{AB} = 6$, $\overline{BC} = 8$, $\overline{AC} = 10$)



[배점 3, 하상]

① 1

② 1.5

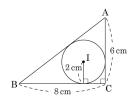
4 2.5

(5) 3

해설

$$\begin{split} \triangle \mathbf{ABI} + \triangle \mathbf{BCI} + \triangle \mathbf{ACI} &= \frac{1}{2} \times 8 \times 6 = 24 \ , \\ \frac{1}{2} \times (6 + 8 + 10) \times r &= 24 \ \therefore \ r = 2 \end{split}$$

 6. 다음 그림에서 점 I 는 △ABC 의 내심이다. 내접원의 반지름의 길이는 2cm 이고, △ABC 는 직각삼각형일 때, △ABC 의 둘레의 길이를 구하여라.



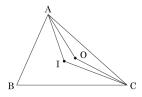
[배점 3, 하상]

▶ 답:

▷ 정답: 24°

해설

 \triangle ABC 의 넓이가 $6\times 8\times \frac{1}{2}=24$ 이므로 $\frac{1}{2}\times 2\times (\triangle$ ABC의 둘레의 길이) = 24 따라서 \triangle ABC 의 둘레의 길이는 24cm 이다. 7. 다음 그림에서 점 O 는 △ABC 의 외심, 점 I 는 △ABC 의 내심이다. ∠AOC + ∠AIC = 290° 일 때, ∠AIC 의 크기는?



[배점 3, 하상]

- ① 160°
- ② 120°
- ③ 125°

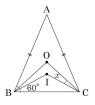
- (4) 130°
- ⑤ 140°

해설

 \triangle ABC 의 외심이 점 O 일 때, $\frac{1}{2}\angle$ AOC = \angle B , \triangle ABC 의 내심이 점 I 일 때, $\frac{1}{2}\angle$ B+90° = \angle AIC

 $\angle AOC + \angle AIC = 2\angle B + \frac{1}{2}\angle B + 90^\circ = 290^\circ$ 일 때. $\angle B = 80^\circ$ 이다.

때, $\angle B = 80^\circ$ 이다. 따라서 $\angle AIC = \frac{1}{2} \angle B + 90^\circ = 40^\circ + 90^\circ = 130^\circ$ 이다. 8. 다음 그림에서 점 O 와 I 는 각각 AB = AC 인 이등 변삼각형 ABC 의 외심과 내심이다. ∠ABC = 60° 일 때, ∠x 의 크기= ()° 이다. 빈 칸에 들어갈 수는?



[배점 3, 하상]

▶ 답:

▷ 정답: 0°

해설

 \triangle ABC 의 외심이 점 O 일 때, $\frac{1}{2}\angle$ BOC = \angle A 이다.

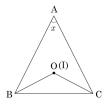
∠ABC = 60° 이므로 ∠A = 60° 이고, ∠BOC = 120° 이다.

 $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2}\angle A + 90^\circ = \angle BIC$ 이므로

 $\angle BIC = \frac{1}{2} \times 60^{\circ} + 90^{\circ} = 120^{\circ}$ 이다.

 \triangle OBC 도 이등변삼각형이므로 \angle OBC = 30° 이다.

또, $\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$ 이다. 따라서 $\angle OCI = \angle OBI = \angle OBC - \angle IBC = 30^{\circ} - 30^{\circ} = 0^{\circ}$ 이다. 9. 다음 그림과 같이 $\triangle ABC$ 의 외심 O 와 내심 I 가 일 치할 때, $\angle x$ 의 크기를 구하여라.



[배점 3, 하상]

▶ 답:

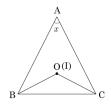
▷ 정답: 60°

해설

 $\triangle ABC$ 의 외심과 내심이 일치할 때는 $\triangle ABC$ 는 정삼각형이다.

따라서 $x = 60^{\circ}$ 이다.

10. 다음 그림과 같이 \triangle ABC 의 외심 O 와 내심 I 가 일 치할 때, \angle x 의 크기를 구하여라.



[배점 3, 하상]

▶ 답:

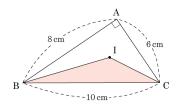
▷ 정답: 60°

해설

 \triangle ABC 의 외심과 내심이 일치할 때는 \triangle ABC 는 정삼각형이다.

따라서 $x = 60^{\circ}$ 이다.

11. 다음 그림과 같이 $\angle A = 90^\circ$ 인 직각삼각형 ABC 에서 I 가 \triangle ABC 의 내심일 때, \triangle IBC 의 넓이를 구하여라.

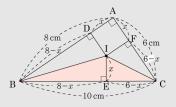


[배점 3, 중하]

▶ 답:

정답: 10 cm²

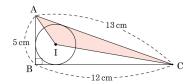
해설



내심에서 각 변에 이르는 거리를 x 라 할 때, 각 변의 길이는 그림과 같다.

 $\overline{\mathrm{BC}} = 8 - x + 6 - x = 10$ 이므로 $x = 2\mathrm{cm}$ $\triangle \mathrm{IBC}$ 의 넓이는 $\frac{1}{2} \times 10 \times 2 = 10 (\mathrm{cm}^2)$ 이다.

12. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 의 내심이 I 이고, $\overline{AB}=5\mathrm{cm}, \overline{BC}=12\mathrm{cm}, \overline{AC}=13\mathrm{cm}$ 일 때, $\triangle AIC$ 의 넓이를 구하여라.



[배점 3, 중하]

▶ 답:

▷ 정답: 13 cm²

해설

 \overline{AB} 와 내접원이 접하는 점을 D, \overline{BC} 와 내접원이 접하는 점을 E, \overline{AC} 와 내접원이 접하는 점을 F 라고 하자.

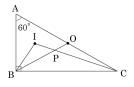
 $\overline{\rm DI}=\overline{\rm BE},\ x=\overline{\rm BE}$ 라 하면 $\overline{\rm AF}=5-x,\ \overline{\rm CF}=12-x$

$$\overline{AC} = \overline{AF} + \overline{CF} = 5 - x + 12 - x = 13$$

 $\therefore x = 2 \text{cm}$

반지름의 길이가 $2 \mathrm{cm}$ 이므로 $\triangle \mathrm{AIC}$ 의 넓이는 $\frac{1}{2} \times 13 \times 2 = 13 (\mathrm{cm}^2)$

13. 다음 그림에서 ∠B = 90° 인 직각삼각형 ABC 에서 점 I, O 는 각각 내심, 외심이다. ∠A = 60° 일 때, ∠BPC 의 크기를 구하여라.



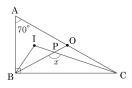
[배점 4, 중중]

답:

▷ 정답: 135°

해설

외심의 성질에 의해 $\overline{OA} = \overline{OB}$ 이므로 ∠A = ∠OBA = 60° → ∠OBC = 30° 이다. … 내심의 정의에 의해 \overline{IC} 가 ∠ACB = 30° 를 이등 분하므로 ∠ICB = 15° 이고, ∠BIC = $90^\circ + 60^\circ \times \frac{1}{2} = 120^\circ$ 이므로 △IBC의 내각의 합을 이용하면 ∠IBC = 180° − $(120^\circ + 15^\circ) = 45^\circ$ 이다. … © — ①에 의해 ∠IBP = 15° 이다. ∠BPC 는 ∠IPB 의 외각이므로 ∠BPC = ∠BIC+ ∠IBP = $120^\circ + 15^\circ = 135^\circ$ **14.** 다음 그림과 같이 $\angle B = 90^{\circ}$ 인 직각삼각형 ABC 에서 점 O, I 는 각각 외심, 내심이다. $\angle A = 70^{\circ}$ 일 때, $\angle x$ 의 크기는?



[배점 4, 중중]

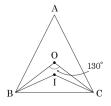
- ① 120°
- ② 130°
- ③ 140°

- 4 150°
- ⑤ 160°

해설

$$\angle ACB = 90^{\circ} - 70^{\circ} = 20^{\circ}$$
 이므로 $\angle ICB = \frac{1}{2}\angle C = 10^{\circ}$ $\triangle OBC$ 에서 $\overline{OB} = \overline{OC}$ 이므로 $\angle OBC = \angle OCB = 20^{\circ}$ 따라서 $\triangle PBC$ 에서 $\angle x = \angle BPC = 180^{\circ} - (10^{\circ} + 20^{\circ}) = 150^{\circ}$ 이다.

15. 다음 그림에서 삼각형 ABC 의 외심과 내심이 각각 O, I 이고 ∠BOC = 130° 일 때, ∠BIC + ∠BOC 의 크기는 몇 도인가?



[배점 4, 중중]

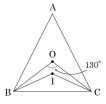
- ① 177°
- ② 177.5°
- ③ 187°

- **4** 187.5°

해설

 $\triangle ABC$ 의 외심이 점 O 일 때, $\frac{1}{2}\angle BOC = \angle A$ 이므로 $\angle BOC = 130^{\circ}$ $\angle A = 65^{\circ}$ 이다. $\triangle ABC$ 의 내심이 점 I 일 때, $\frac{1}{2}\angle A + 90^{\circ} = \angle BIC$ 이므로 $\angle BIC = \frac{1}{2} \times 65^{\circ} + 90^{\circ} = 122.5^{\circ}$ 이다. 따라서 $\angle BIC + \angle BOC = 122.5^{\circ} + 65^{\circ} = 187.5^{\circ}$ 이다.

16. 다음 그림에서 삼각형 ABC 의 외심과 내심이 각각 O, I 이고 ∠BOC = 130° 일 때, ∠BIC + ∠BOC 의 크기는 몇 도인가?



[배점 4, 중중]

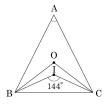
- ① 177°
- ② 177.5°
- ③ 187°

- (4) 187.5°
- \bigcirc 197°

해설

 \triangle ABC 의 외심이 점 O 일 때, $\frac{1}{2}\angle$ BOC = \angle A 이므로 \angle BOC = 130° \angle A = 65° 이다. \triangle ABC 의 내심이 점 I 일 때, $\frac{1}{2}\angle$ A + 90° = \angle BIC 이므로 \angle BIC = $\frac{1}{2}\times65^{\circ}$ + 90° = 122.5° 이다. 따라서 \angle BIC + \angle BOC = 122.5° + 65° = 187.5° 이다.

17. 다음 그림에서 점 O 는 △ABC 의 외심이고, 점 I 는 △OBC 의 내심이다. ∠BIC = 144° 일 때, ∠A 의 크 기를 구하여라.



[배점 4, 중중]

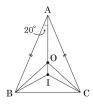
▶ 답:

▷ 정답: 54°

해설

90° +
$$\frac{1}{2}$$
 \angle BOC = 144° 이므로 \angle BOC = 108° 이다.
따라서 \angle A = $\frac{1}{2}$ \angle BOC = 54° 이다.

18. 다음 그림과 같은 이등변삼각형 ABC 에서 점 I 와 점 O 는 각각 △ABC 의 내심과 외심이다. \angle BAO = 20° 일 때, ∠BIC – ∠BOC 의 크기는?



[배점 4, 중중]

- ① 30°
- ② 40°
- ③ 50°

- 4 60°
- ⑤ 70°

해설

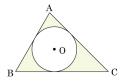
 $\triangle ABC$ 의 외심이 점 O 일 때, $\frac{1}{2} \angle BOC = \angle A$,∠A = 40° 이므로

 $\angle ABC = 70^{\circ}$, $\angle BOC = 80^{\circ}$ 이다.

 \triangle ABC 의 내심이 점 I 일 때, $\frac{1}{2}$ \angle A+90° = \angle BIC 이므로

 $\angle \mathrm{BIC} = \frac{1}{2} \times 40^\circ + 90^\circ = 110^\circ$ 이다. 따라서 $\angle \mathrm{BIC} - \angle \mathrm{BOC} = 110^\circ - 80^\circ = 30^\circ$ 이다.

19. 다음 그림에서 원 O 는 \triangle ABC 의 내접원이다. 원 O 의 둘레의 길이가 6π , $\triangle ABC$ 의 둘레의 길이가 32 일 때, 색칠한 부분의 넓이는?



[배점 5, 중상]

- $1 48 9\pi$
- ② $9\pi 24$
- $3 24 6\pi$
- (4) $42 6\pi$ (5) $52 9\pi$

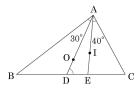
원 I 의 둘레의 길이가 6π 이므로 반지름의 길이 r=3이다.

점 I 가 △ABC 의 내심일 때,

 $(\triangle ABC$ 의 넓이) = $\frac{1}{2} \times r \times \triangle ABC$ 의 둘레= $\frac{1}{2} \times 3 \times 32 = 48$ 이다.

2 따라서 색칠한 부분의 넓이는 (△ABC 의 넓이)-(원 I 의 넓이) = $48 - 9\pi$ 이다.

20. 다음 그림의 △ABC 에서 점 O 와 I 는 각각 삼각형의 외심과 내심이다. ∠BAD = 30°, ∠CAE = 40°일 때, ∠ADE = ()°이다. () 안에 알맞은 수를 구하여라.



[배점 5, 중상]

▶ 답:

➢ 정답: 70

해설

 $\angle {\rm BAE} = \angle {\rm CAE}$ 이므로 $\angle {\rm DAE} = 10$ °, $\angle {\rm OBA} =$

 $\angle OAB = 30^{\circ}$

 $\angle OBC + \angle OBA + \angle OAC = 90$ ° 이므로 $\angle OBC = 10$ °

 $\therefore \angle ADE = \angle ABD + \angle BAD = 70^{\circ}$