1. 현정이네 반 학생 35 명 중 야구만 잘하는 학생은 12 명, 축구만 잘하는 학생은 13 명이고, 둘 다 못하는 학 생은 4 명이다. 야구와 축구를 모두 잘하는 학생은 몇 명인지 구하여라. [배점 3, 중하]

▶ 답:

▷ 정답: 6명

해설

현정이네 반 학생 전체의 집합을 U, 야구를 잘하 는 학생들의 집합을 A, 축구를 잘하는 학생들의 집합을 B 라고 하면,

$$n(U) = 35$$
, $n(A - B) = 12$,

$$n(B-A) = 13 , n((A \cup B)^c) = 4$$

$$n(A \cup B) = n(U) - n((A \cup B)^c) = 35 - 4 = 31$$

$$n(A \cup B) = n(A - B) + n(B - A) + n(A \cap B)$$

$$31 = 12 + 13 + n(A \cap B)$$

- $n(A \cap B) = 6$
- **2.** n(A) = 14, n(B) = 23, $n(A \cap B) = 7$ 일 때, n(B A) = 14[배점 3, 중하] A) - n(A - B) 의 값은?
 - ① 6
- 2 7
- 3 8
- ⑤ 10

$$n(A - B) = n(A) - n(A \cap B)$$

$$n(B - A) = n(B) - n(A \cap B)$$

$$n(A - B) = 14 - 7 = 7$$

$$n(B - A) = 23 - 7 = 16$$

$$\therefore n(B-A) - n(A-B) = 16 - 7 = 9$$

3. 다음 중 옳은 것을 모두 고르면? (정답 2 개)

[배점 4, 중중]

①
$$n(\{2\}) < n(\{3\})$$

②
$$A = \{1, 2, 3\}, B = \{1, 2\}$$
 이면 $n(A) - n(B) = 3$ 이다.

$$3n(A) = 0$$
 이면 $A = \emptyset$ 이다.

⑤ A = {x | x는 8의 약수}, B = {x | x는 9보다 작은 홀수 $\}$ 이면 n(A) = n(B) 이 다.

①
$$n(\{2\}) = n(\{3\}) = 1$$

②
$$A = \{1, 2, 3\}, B = \{1, 2\}$$
 이면 $n(A) - n(B) = 3 - 2 = 1$ 이다.

$$(4)$$
 $n({50}) - n({40}) = 1 - 1 = 0$

⑤
$$A = \{1, 2, 4, 8\}, B = \{1, 3, 5, 7\}$$
이므로 $n(A) = n(B) = 4$

- **4.** 10 보다 작은 소수의 집합을 A 라 할 때, 다음 중 옳은 것은? [배점 4, 중중]
 - ① $3 \notin A$
- \bigcirc $7 \notin A$
- $3 9 \in A$

- (4) $2 \in A$
- ⑤ $4 \in A$

집합 A 의 원소는 2, 3, 5, 7 이므로

④ $2 \in A$ 이다.

- 5. 전체집합 U 의 두 부분집합 A,B 에 대하여 $A^c \subset B^C$ 일 때, 다음 중 옳은 것은? [배점 4, 중중]
 - ① $A B = \emptyset$
- $3 A \cap B^C = \emptyset$

해설

 $A^C \subset B^C$ 이므로 $B \subset A$ 이다.

- ① $B A = \emptyset$
- $\ \ \,$ $\ \ \,$
- $(A \cup B) B = A B$
- 6. 다음 중에서 옳은 것을 모두 고르면?

[배점 5, 중상]

- ① A = B 이면 $A \subset B, B \subset A$
- ② n(A) = n(B) 이면 A = B
- ③ $A \subset B$ 이면 n(A) < n(B)
- ④A = B 이면 n(A) = n(B)

해설

- ② $A = \{1, 2\}, B = \{3, 4\}$ 이면 n(A) = n(B) 이지만 $A \neq B$
- ③ A = B 이면 $A \subset B$ 이지만 n(A) < n(B)가 아닌 n(A) = n(B)
- ⑤ $n(\{1, 2, 3, 4\}) = 4$ $n(\{1, 2, 3\}) = 3$ 4-3=1

- 7. 집합 $A_a = \{x \mid x \in a \text{ 의 배수}\}$, 집합 $B_b = \{x \mid x \in b \text{ 의 약수}\}$ 라고 할 때, 다음 중 옳은 것을 모두 고르면? [배점 5, 중상]
 - ① $A_2 \subset A_4$
- $\bigcirc B_2 \subset B_4$
- ③ $A_4 = B_4$
- $(4) n(B_{15}) = 5$
- $\bigcirc A_8 \subset A_4 \subset A_2$

해설

 $A_2 = \{2, 4, 6, 8, 10, 12, \cdots\}$

 $A_4 = \{4, 8, 12, 16, \cdots\}$

 $A_8 = \{8, 16, 24, \cdots\}$

 $B_2 = \{1, 2\}$

 $B_4 = \{1, 2, 4\}$

 $B_{15} = \{1, 3, 5, 15\}$

① $A_4 \subset A_2$ ③ $A_4 \neq B_4$ ④ $n(B_{15}) = 4$

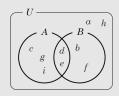
8. 전체집합 U 의 두 부분집합 A, B 가 다음을 만족할 때, n(A) - n(B)의 값을 구하여라.

보기

$$A \cup B = \{b, c, d, e, f, g, i\}$$

$$A^{c} \cap B = \{b, f\}$$

$$A^{c} \cup B^{c} = \{a, b, c, f, g, h, i\}$$


[배점 5, 중상]

▶ 답:

▷ 정답: 1

해설

주어진 조건을 벤 다이어그램에 나타내면 다음과 같다.

$$A = \{c, d, e, g, i\}, B = \{b, d, e, f\}$$

 $\therefore n(A) - n(B) = 5 - 4 = 1$

9. 전체집합 U 의 두 부분집합 A, B 에 대하여 $n(U) = 40, n(A\cap B) = 5, n(A^c\cap B^c) = 3$ 일 때, n(A-B) + n(B-A) 의 값을 구하여라. [배점 $5, \ \$ 장상]

답:

➢ 정답: 32

해설

$$A^{c} \cap B^{c} = (A \cup B)^{c}$$

$$n(A \cup B) = n(U) - n((A \cup B)^{c}) = 40 - 3 = 37$$

$$n(A - B) + n(B - A)$$

$$= n(A \cup B) - n(A \cap B)$$

$$= 37 - 5 = 32$$

- **10.** 다음 조건을 만족하는 집합 A 의 원소를 작은 순서로 $a_1, a_2, a_3, \cdots, a_n$ 으로 나타낼 때, $a_2 + a_3 + a_5$ 의 값을 구하여라.
 - 집합 *A* 의 원소는 항상 1 보다 크거나 같다.
 - $a_1=1$, $x\in A$ 이면, $\frac{3}{2}x\in A$ 이다.

[배점 5, 상하]

▶ 답:

$$ightharpoonup$$
 정답: $\frac{141}{16}$

해설

$$a_1=1$$
 이면 $a_2=\frac{3}{2}\times a_1$ 이고 이러한 방식으로
집합 A 를 구하면,

$$\left\{1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16}, \frac{243}{32}, \dots, \left(\frac{3}{2}\right)^{(n-1)} \times a_1\right\}$$

,
$$a_2=\frac{3}{2}$$
 , $a_3=\frac{9}{4}$, $a_5=\frac{81}{16}$ 이다.
$$\therefore a_2+a_3+a_5=\frac{141}{16}$$

11. 집합 P 에 대하여 $[A]=\{P|P\subset A\}$ 로 정의한다. $A=\{x,y,z\}$ 일 때, 집합 [A] 를 원소나열법으로 나타 내어라. [배점 5, 상하]

▶ 답:

$$ightharpoonup$$
 정답: $[A]=\{\varnothing,\{x\},\{y\},\{z\},\{x,y\},\{y,z\},\{z,x\},\{x,y,z\}$

해설

 $[A] = \{P|P \subset A\}$ 라는 정의를 살펴보면 P 는 집 합 A 의 부분집합이다.

따라서 [A] 는 집합 A 의 부분집합들을 원소로 가진다.

$$\therefore [A] = \{\varnothing, \{x\}, \{y\}, \{z\}, \{x, y\}, \{y, z\}, \{z, x\}, \{x, y, z\}\}$$

12. 전체집합 $U=\{2,\ 3,\ 5,\ 7,\ 11,\ 13,\ 17,\ 19\}$ 의 두 부 분집합 $A=\{7,\ 19\},\ B=\{3,\ 5,\ 7,\ 11,\ 13\}$ 에 대하 여 다음을 만족하는 모두 만족하는 집합 X 의 개수를 구하여라.

$$A \cup X = X, \ X \cap (B - A) = \{5, \ 11\}$$

[배점 5, 상하]

▶ 답:

▷ 정답: 4개

해설

 $A \cup X = X$ 이므로 $A \subset X$

∴ 7, 19 는 X 의 원소

 $B - A = \{3, 5, 11, 13\}$ 이고

 $X \cap (B - A) = \{5, 11\}$ 이므로

 $5, \ 11$ 은 X 의 원소이고 $3, \ 13$ 은 X 의 원소가 아니다.

따라서 X 는 5, 7, 11, 9 를 포함하고 3, 13 은 포함하지 않는 전체집합U 의 부분집합이므로 $2^{8-4-2}=2^2=4(\mathcal{H})$

13. 전체집합 U 의 두 부분집합 A, B 에 대하여 $A \subset B$ 일 때, 서로 같은 집합을 고르면?

 \bigcirc A

 \bigcirc B-A

 \bigcirc $A \cap B$

(2) Ø

 \bigcirc $A - B^c$

[배점 5, 상하]

▶ 답:

▶ 답:

▶ 답:

▷ 정답: 🗇

▷ 정답 : □

▷ 정답: □

. 해설

 $A \subset B$ 이면 $A \cap B = A$,

 $A - B^c = A \cap (B^c)^c = A \cap B = A$

따라서 \neg , \vdash , \vdash 이 A 로 같다.

 ${f 14.}$ 다음 중 옳은 것을 모두 고르면? (정답 2개)

[배점 6, 상중]

①
$$A = \emptyset$$
 이면 $n(A) = 0$

②
$$A = B$$
 이면 $n(A) = n(B)$

- ③ n(A) = n(B) 이면 A = B
- ④ $A \subset B$ 이면 n(A) < n(B)
- ⑤ $A \subset B$ 이고 $B \subset A$ 이면 n(B) < n(A)

해설

- ③ $A=\{1,2\}\,,\; B=\{a,b\}$ 일 때, n(A)=n(B) 이지만 $A\neq B$ 이다.
- ④ A=B 일 때, n(A)=n(B) 이다. $A\subset B$ 일 때, $n(A)\leq n(B)$
- ⑤ $A \subset B$ 이고 $B \subset A$ 이면 A = B 이므로, n(A) = n(B) 이다.

15. 전체집합 $U = \{x | x = 20 \text{ 이하의 } x + 20 \text{ OND } x + 20$

 $A=\{x|x\leq 7, x\in U\}$ 일 때, $n(A\cap B)=3$ 을 만족하는 집합 B 의 개수를 구하여라. [배점 6, 상중]

▶ 답:

▷ 정답: 64개

해설

U = {x|x는 20 이하의 소수} = {2,3,5,7,11,13,17,19},

 $A = \{x | x \le 7, x \in U\} = \{2, 3, 5, 7\},\$

 $n(A \cap B) = 3 \rightarrow$ 집합 $B \leftarrow \{2,3,5,7\}$ 중에 세수를 포함하고 나머지 하나는 반드시 포함하지 않는 U의 부분집합이다.

- (1) 2,3,5 는 반드시 포함하고, 7 은 반드시 포함하지 않는 부분집합의 개수는 $2^{8-3-1}=16$ (개)
- (2) 2,3,7 은 반드시 포함하고, 5 는 반드시 포함하지 않는 부분집합의 개수는 $2^{8-3-1}=16$ (개)
- (3) 2,5,7 은 반드시 포함하고, 3 은 반드시 포함하지 않는 부분집합의 개수는 $2^{8-3-1}=16$ (개)
- (4) 3,5,7 은 반드시 포함하고, 2 는 반드시 포함하지 않는 부분집합의 개수는 $2^{8-3-1}=16$ (개) 따라서 집합 B 의 개수는 $16\times 4=64$ (개)