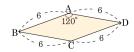

단원테스트 클리닉

1. 다음 그림에서 나무의 높이 h 를 구하여라. (단, $\sqrt{3}$ =: 1.7)

[배점 3, 중하]

▶ 답:

▷ 정답: 17 m


$$\overline{BC} = \overline{AC} = 20(m)$$

△ACD 에서

$$h = 20 \sin 60^{\circ} = 20 \times \frac{\sqrt{3}}{2} = 10\sqrt{3} = 10 \times 1.7 = 10^{\circ}$$

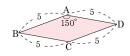
 $\therefore h = 17 \text{m}$

2. 다음 사각형의 넓이는?

[배점 3, 중하]

- ① $12\sqrt{3}$ ② $14\sqrt{3}$
- $3 16\sqrt{3}$
- 4 18 $\sqrt{3}$ 5 20 $\sqrt{3}$

넓이 :
$$6 \times 6 \times \sin 120^{\circ}$$


$$=6\times6\times\sin60^{\circ}$$

$$= 6 \times 6 \times \frac{\sqrt{3}}{2}$$

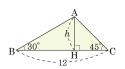
$$=18\sqrt{3}$$

 $\therefore 18\sqrt{3}$

3. 다음 사각형의 넓이를 구하여라.

[배점 3, 중하]

ightharpoonup 정답: $\frac{25}{2}$

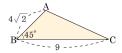

넓이: $5 \times 5 \times \sin 150^{\circ}$

$$= 5 \times 5 \times \sin 150^{\circ}$$

$$= 5 \times 5 \times \frac{1}{2}$$
$$= \frac{25}{2}$$

$$\frac{25}{}$$

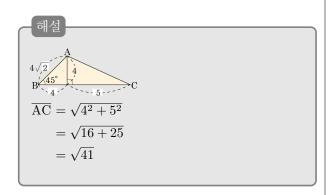
4. 다음 \triangle ABC 에서 높이 h 를 구하여라.

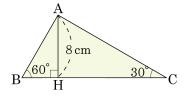

[배점 3, 중하]

▶ 답:

ightharpoonup 정답: $6(\sqrt{3}-1)$

$$h = \frac{12}{\tan 60^{\circ} + \tan 45^{\circ}}$$
$$= \frac{12}{\sqrt{3} + 1}$$
$$= 6(\sqrt{3} - 1)$$


5. 다음 그림에서 \overline{AC} 의 길이는?


[배점 3, 중하]

- ① $\sqrt{31}$
- $2\sqrt{41}$
- $\sqrt{51}$

- $4\sqrt{61}$
- $\sqrt{71}$

6. 다음 그림에서 $\overline{AH} = 8 \text{cm}$ 일 때, \overline{BC} 의 길이는?

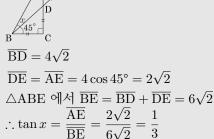
[배점 3, 중하]

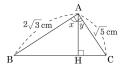
- ① $\frac{2\sqrt{3}}{3}$ cm ② $\frac{4\sqrt{3}}{3}$ cm ③ $2\sqrt{3}$ cm ④ $\frac{32\sqrt{3}}{3}$ cm ⑤ $\frac{10\sqrt{3}}{3}$ cm

$$\sin 30^\circ = \frac{\overline{AH}}{\overline{AC}}$$

$$\overline{AC} = \frac{\overline{AH}}{\sin 30^\circ} = 8 \div \frac{1}{2} = 16 \text{(cm)}$$

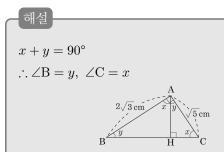
$$\sin 60^\circ = \frac{\overline{AC}}{\overline{BC}}$$
따라서 $\overline{BC} = \frac{\overline{AC}}{\sin 60^\circ} = 16 \div \frac{\sqrt{3}}{2} = 32 \frac{\sqrt{3}}{3} \text{(cm)}$
이다.


7. 다음 그림과 같이 \angle C = 90° 인 \triangle ABC 에서 \overline{AD} = \overline{CD} = \overline{BC} = 4 이고, \angle ABD = x 라 할 때, $\tan x$ 의 값을 구하여라.


[배점 3, 중하]

ightharpoonup 답:

점 A 에서 BD의 연장선에 그은 수선의 발을 E라 하면 △DBC ∽ △DAE(∵ AA닮음)



8. 다음 그림과 같이 $\angle A = 90^\circ$ 인 직각삼각형의 점 A 에서 빗변에 내린 수선의 발을 H 라 하고, $\overline{AB} = 2\sqrt{3} \text{cm}$, $\overline{AC} = \sqrt{5} \text{cm}$, $\angle BAH = x$, $\angle CAH = y$ 일 때, $\sin^2 x - 2\sin^2 y$ 의 값은?

[배점 3, 중하]

① $\frac{1}{17}$ ② $\frac{2}{17}$ ③ $\frac{3}{17}$ ④ $\frac{4}{17}$ ⑤ $\frac{5}{17}$

△ABC और्स\
$$\overline{BC} = \sqrt{(2\sqrt{3})^2 + (\sqrt{5})^2} = \sqrt{17} \text{ (cm)}$$

$$\therefore \sin x = \frac{2\sqrt{3}}{\sqrt{17}}, \quad \sin y = \frac{\sqrt{5}}{\sqrt{17}}$$

$$\sin^2 x - 2\sin^2 y = \frac{12}{17} - 2 \times \frac{5}{17} = \frac{2}{17}$$

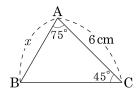
9. $\tan A = \sin^2 35^\circ + \sin^2 55^\circ + 2 \tan 28^\circ \times \tan 62^\circ$ 일 때, $\sin^2 A - \cos^2 A$ 의 값은?

(단, 0° $\leq A \leq 90$ °)

[배점 3, 중하]

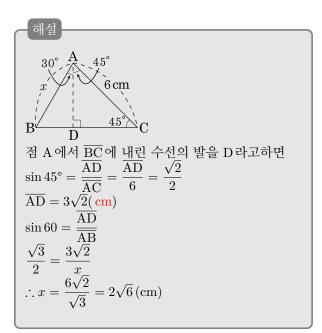
- ① $\frac{1}{5}$ ② $\frac{2}{5}$ ③ $\frac{3}{5}$ ④ $\frac{4}{5}$

$$\tan A = \sin^2 35^\circ + \cos^2 (90^\circ - 55^\circ) + 2 \tan 28^\circ \times \frac{1}{\tan(90^\circ - 62^\circ)} = 1 + 2 = 3$$


 $\tan A = 3$ 을 만족하는 직각삼각형 ABC 를 만들

$$\sin A = \frac{3}{\sqrt{10}}, \cos A = \frac{1}{\sqrt{10}}$$

 $\sin A = \frac{3}{\sqrt{10}}, \cos A = \frac{1}{\sqrt{10}}$ $\sin^2 A - \cos^2 A = \frac{9}{10} - \frac{1}{10} = \frac{4}{5}$


10. 다음 그림과 같은 $\angle C = 45^\circ$, $\angle A = 75^\circ$ 인 $\triangle ABC$ 에 서 $\overline{AB} = x$, $\overline{AC} = 6$ cm 라 할 때, x 의 값을 구하여라.

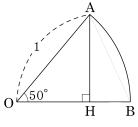
[배점 3, 중하]

답:

ightharpoons 정답: $2\sqrt{6}\,\mathrm{cm}$

11. $45^{\circ} \le A < 90^{\circ}$ 이고 $\sqrt{(\sin A + \cos A)^2} + \sqrt{(\cos A - \sin A)^2} = \frac{16}{17}$ 을 만족하는 A 에 대해서 $\cos A \times \tan A$ 의 값을 구하여라.

[배점 3, 중하]


▶ 답:

ightharpoonup 정답: $\frac{8}{17}$

해설

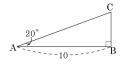
(₹Å) = sin A + cos A - cos A + sin A
= 2 sin A =
$$\frac{16}{17}$$
 ∴ sin A = $\frac{8}{17}$
cos A = $\sqrt{1 - \sin^2 A} = \sqrt{1 - \frac{64}{289}}$
= $\sqrt{\frac{225}{289}} = \frac{15}{17}$
∴ cos A × tan A = cos A × $\frac{\sin A}{\cos A} = \sin A = \frac{8}{17}$

12. 다음 그림과 같이 반지름의 길이가 1 이고, 중심각의 크 기가 50° 인 부채꼴 OAB 에서 ĀH⊥OB 일 때, BH 의 길이를 구하여라. (단, sin 50° = 0.77, cos 50° =

0.64, $\tan 50$ ° = 1.2 로 계산한다.)

[배점 3, 중하]

▶ 답:


▷ 정답: 0.36

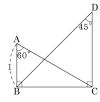
해설

$$\triangle AOH$$
 에서 $\cos 50^{\circ} = \frac{\overline{OH}}{\overline{OA}} = \frac{\overline{OH}}{1} = \overline{OH} = 0.64$
따라서 $\overline{BH} = \overline{OB} - \overline{OH} = 1 - 0.64 = 0.36$ 이다.

13. 다음 그림에서 AB = 10, ∠A = 20° 일 때, 삼각형의 둘레를 구하여라.

(단, $\sin 20^\circ = 0.34$, $\cos 20^\circ = 0.94$, $\tan 20^\circ = 0.36$ 으로 계산하고, 계산 결과는 소숫점 둘째자리 까지 나 타낸다.)

[배점 3, 중하]


▶ 답:

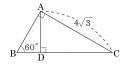
➢ 정답 : 24.24

해설

$$\cos 20^\circ = \frac{\overline{AB}}{\overline{AC}} = \frac{10}{\overline{AC}}, \ \overline{AC} = \frac{10}{\cos 20^\circ} = \frac{10}{0.94} = 10.64$$
 $\tan 20^\circ = \frac{\overline{BC}}{\overline{AB}} = \frac{\overline{BC}}{10}, \ \overline{BC} = 10\tan 20^\circ = 10 \times 0.36 = 3.6$
따라서 삼각형의 둘레는 $10 + 10.64 + 3.6 = 24.24$ 이다.

14. 다음 그림에서 $\angle ABC = \angle BCD = 90^{\circ}, \overline{AB} = 1,$ ∠BAC = 60°, ∠BDC = 45° 일 때, BD 의 길이를 구하여라.

[배점 3, 중하]

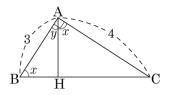

답:

 \triangleright 정답: $\sqrt{6}$

$$\triangle$$
ABC 에서 $\tan 60^\circ = \frac{\overline{BC}}{1} = \sqrt{3}$, 따라서 $\overline{BC} = \sqrt{3}$ 이다.

 $\triangle BCD$ 에서 $\sin 45^{\circ} = \frac{\sqrt{3}}{\overline{BD}} = \frac{\sqrt{2}}{2}$, 따라서 $\overline{BD} =$ $\sqrt{6}$ 이다.

15. 다음 그림과 같이 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC 에서 $\overline{AC} = 4\sqrt{3}$, $\angle B = 60^{\circ}$ 일 때, $\overline{\mathrm{BD}}$ 의 길이를 구하여라.


[배점 3, 중하]

답:

▷ 정답: 2

$$\sin 60^\circ = \frac{4\sqrt{3}}{\overline{BC}} = \frac{\sqrt{3}}{2}$$
 이므로 $\overline{BC} = 8$ 이다.
$$\cos 60^\circ = \frac{\overline{AB}}{\overline{CB}} = \frac{\overline{AB}}{8} = \frac{1}{2} \text{ 이므로 } \overline{AB} = 4 \text{ 이다.}$$

$$\cos 60^\circ = \frac{1}{2} = \frac{\overline{BD}}{4} \text{ 이므로 } \overline{BD} = 2 \text{ 이다.}$$

16. 다음 보기 중 $\tan x$ 와 같은 값을 갖는 것을 보 기에서 모두 골라라.

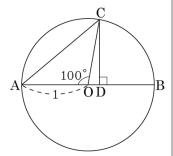
 $\frac{\overline{CH}}{\overline{AH}}$ $\overline{\mathrm{AH}}$ \bigcirc $\overline{\mathrm{BH}}$ $\overline{\mathrm{AH}}$ $\overline{\mathrm{AH}}$ $\overline{\mathrm{BC}}$

[배점 3, 중하]

답:

답: 답:

▷ 정답 : ⑤ ▷ 정답: 心


▷ 정답: □

$$x+y=90$$
 °이므로 $\angle x+\angle {
m C}=90$ °가 되고, 따라 서 $\angle {
m C}=y$

$$\tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{4}{3} = \frac{\overline{CH}}{\overline{AH}} = \frac{\overline{\overline{AH}}}{\overline{\overline{BH}}}$$

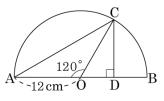
 $\tan x = \frac{\overline{AC}}{\overline{AB}} = \frac{4}{3} = \frac{\overline{CH}}{\overline{AH}} = \frac{\overline{AH}}{\overline{BH}}$ 따라서 $\tan x$ 와 같은 것은 $\frac{4}{3}$, $\frac{\overline{CH}}{\overline{AH}}$, $\frac{\overline{AH}}{\overline{BH}}$ 이다.

17. 다음 그림과 같이 반지름의 길이가 1인 원 위의 점 C에서 지름 AB에 내린 수선의 발을 D라할 때, 다음 중 옳지않은 것을 골라라.

$$\bigcirc$$
 $\overline{CD} = \cos 80^{\circ}$

$$\bigcirc$$
 $\overline{OD} = \cos 80^{\circ}$

$$\bigcirc$$
 $\overline{AD} = 1 + \cos 80^{\circ}$


[배점 3, 중하]

▶ 답:

▷ 정답 : ⑤

해설

18. 다음 그림에서 ĀB는 원
O의 지름이고 ∠AOC =
120°, ∠ADC = 90°,
ĀO = 12 cm 일 때,
△CAD의 넓이를 구하
여라.

[배점 3, 중하]

▶ 답:

ightharpoonup 정답: $54\sqrt{3}\,\mathrm{cm}^2$

해설

$$\triangle CAD = \triangle OAC + \triangle OCD$$

$$\triangle OAC \circlearrowleft \overrightarrow{OD} = \overline{OC} \circlearrowleft \overrightarrow{OD} = 12 \text{ cm}$$

$$\cos 60 \circ = \overline{\overline{OD}} = \overline{OD} = \frac{\overline{OD}}{12} = \frac{1}{2} \quad \therefore \overline{OD} = 6 \text{ cm}$$

$$\triangle OAC = \frac{1}{2} \times 12 \times 12 \times \sin 60 \circ = 36\sqrt{3} \text{ (cm}^2\text{)}$$

$$\triangle OCD = \frac{1}{2} \times 12 \times 6 \times \sin 60 \circ = 18\sqrt{3} \text{ (cm}^2\text{)}$$

$$\triangle CAD = 36\sqrt{3} + 18\sqrt{3} = 54\sqrt{3} \text{ (cm}^2\text{)}$$